Drukuj
Właściciel pewnej apteki przeanalizował dane dotyczące liczby obsługiwanych klientów z \(30\) kolejnych dni. Przyjmijmy, że liczbę \(L\) obsługiwanych klientów \(n\)-tego dnia opisuje funkcja \[L(n) = -n^2 + 22n + 279\] gdzie \(n\) jest liczbą naturalną spełniającą warunki \(n \ge 1\) i \(n \le 30\).
Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Łączna liczba klientów obsłużonych w czasie wszystkich analizowanych dni jest równa \(L(30)\).PF
W trzecim dniu analizowanego okresu obsłużono \(336\) klientów.PF
F P
Którego dnia analizowanego okresu w aptece obsłużono największą liczbę klientów? Oblicz liczbę klientów obsłużonych tego dnia. Zapisz obliczenia.
\(400\)
Strony z tym zadaniem
Matura 2023 majZadania optymalizacyjne z funkcji kwadratowejPewniaki maturalne - formuła 2023
Sąsiednie zadania
Zadanie 3864Zadanie 3865
Zadanie 3866 (tu jesteś)
Zadanie 3867Zadanie 3868