Styczna do wykresu funkcji

Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x-1}{x^2+1}\) dla każdej liczby rzeczywistej \(x\). Wyznacz równanie stycznej do wykresu tej funkcji w punkcie \(P=(1,0)\).
Wykaż, że nie istnieje styczna do hiperboli o równaniu \(y=\frac{4x}{x-3}\) prostopadła do prostej \(l\) o równaniu \(2x+4y-1=0\).
Funkcja \(f\) określona jest wzorem \(f(x)=x^3-2x^2+1\) dla każdej liczby rzeczywistej \(x\). Wyznacz równania tych stycznych do wykresu funkcji \(f\), które są równoległe do prostej o równaniu \(y=4x\).
\(y=4x-7\) oraz \(y=4x+\frac{67}{27}\)
Funkcja \(f\) określona jest wzorem \(f(x)=x^3-4x\). Prosta o równaniu \(x=1\) przecina wykres funkcji \(f\) w punkcie \(P\). Znajdź równanie stycznej do wykresu funkcji \(f\) w punkcie \(P\).
\(y=-x+2\)