Jesteś tu: MaturaArkusze 2012Matura 2012 maj PR

Matura 2012 maj PR

Wyznacz cztery kolejne liczby całkowite takie, że największa z nich jest równa sumie kwadratów trzech pozostałych liczb.
\(-1,0,1,2\)
Rozwiąż nierówność \(x^4 + x^2 \ge 2x\).
\(x\in (-\infty ;0\rangle \cup \langle 1;+\infty )\)
Rozwiąż równanie \(\cos2x + 2 = 3\cos x\).
\(x=\frac{\pi }{3}+2k\pi \) lub \(x=-\frac{\pi }{3}+2k\pi \) lub \(x=2k\pi \) gdzie \(k\in \mathbb{Z} \)
Oblicz wszystkie wartości parametru \(m\), dla których równanie \(x^2 - (m + 2)x + m + 4 = 0\) ma dwa różne pierwiastki rzeczywiste \(x_1\), \(x_2\) takie, że \({x_1}^4 + {x_2}^4 = 4m^3 + 6m^2 - 32m + 12\).
\(x=-\sqrt{14}\) lub \(x=\sqrt{14}\)
Trzy liczby tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy \(8\), to ciąg ten zmieni się w arytmetyczny. Jeżeli zaś do ostatniej liczby nowego ciągu arytmetycznego dodamy \(64\), to tak otrzymany ciąg będzie znów geometryczny. Znajdź te liczby. Uwzględnij wszystkie możliwości.
\((4,12,36)\) lub \(\left( \frac{4}{9}, -\frac{20}{9}, \frac{100}{9} \right)\)
W układzie współrzędnych rozważmy wszystkie punkty \(P\) postaci: \(P = \left (\frac{1}{2}m + \frac{5}{2}, m \right )\) gdzie \(m\in \langle -1,7 \rangle\). Oblicz najmniejszą i największą wartość \(|PQ|^2\), gdzie \(Q = \left (\frac{55}{2}, 0 \right )\).
\(max = 651\frac{1}{4}\), \(min = 511\frac{1}{4}\)
Udowodnij, że jeżeli \(a + b \ge 0\), to prawdziwa jest nierówność \(a^3 + b^3 \ge a^2b + ab^2\).