Jesteś tutaj: MaturaMatura od 2023Zadania CKE od 2023 - poziom podstawowy
◀ Arkusze pokazowe 2023

Zadania CKE od 2023 - poziom podstawowy

Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.
Wartość wyrażenia \(2021:\left(1-\frac{1}{2022}\right)-\left(1-\frac{2022}{2021}\right):\frac{1}{2021}\) jest równa
A.\( 0 \)
B.\( 1 \)
C.\( 2021 \)
D.\( 2023 \)
D
Dana jest nierówność: \[|x − 3|\ge 5\]
Na którym rysunku prawidłowo zaznaczono na osi liczbowej zbiór wszystkich liczb spełniających powyższą nierówność? Zaznacz właściwą odpowiedź spośród podanych.
A
Oprocentowanie na długoterminowej lokacie w pewnym banku wynosi \(3\%\) w skali roku (już po uwzględnieniu podatków). Po każdym roku oszczędzania są doliczane odsetki od aktualnego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.
Po \(10\) latach oszczędzania w tym banku (i bez wypłacania kapitału ani odsetek w tym okresie) kwota na lokacie będzie większa od kwoty wpłaconej na samym początku o (w zaokrągleniu do \(1\%\))
A.\( 30\% \)
B.\( 34\% \)
C.\( 36\% \)
D.\( 43\% \)
B
Dane są dwie liczby \(x\) i \(y\), takie, że iloraz \(\frac{x}{y}\) jest równy \(\frac{1+\sqrt{5}}{2}\).
Oblicz wartość wyrażenia \(\frac{x+y}{x}\). Wynik podaj bez niewymierności w mianowniku.
\(\frac{1+\sqrt{5}}{2}\)
Dane są liczby \(a=\sqrt{5}-2\) oraz \(b=\sqrt{5}+2\).
Oblicz wartość wyrażenia \(\frac{a\cdot b}{\sqrt{a}+\sqrt{b}} : \frac{\sqrt{a}-\sqrt{b}}{a-b}\) dla podanych \(a\) i \(b\).
\(1\)
Dana jest liczba \(x=a-(\sqrt{3}-\sqrt{2})^2\), gdzie \(a\) należy do zbioru \(\mathbb{R} \) liczb rzeczywistych. W rozwiązaniu zadania uwzględnij fakt, że liczby \(\sqrt{3}\) oraz \(\sqrt{2}\cdot \sqrt{3}\) są niewymierne.
Dokończ zdanie. Zaznacz dwie odpowiedzi, tak aby dla każdej z nich dokończenie zdania było prawdziwe.
Liczba \(x\) jest wymierna dla
A.\( a=5 \)
B.\( a=-\sqrt{3}+\sqrt{2} \)
C.\( a=(\sqrt{2}-\sqrt{3})^2+0{,}3 \)
D.\( a=6 \)
E.\( a=-2\sqrt{6}+12{,}5 \)
F.\( a=(\sqrt{2}-\sqrt{3})^2-2\sqrt{6} \)
G.\( a=-\sqrt{6} \)
CE
Rozwiąż równanie: \[\frac{(4x+1)(x-5)}{(2x-10)(x+3)}=0\]
\(x=-\frac{1}{4}\)
Pensja pana X jest o \(50\%\) wyższa od średniej krajowej, a pensja pana Y jest o \(40\%\) niższa od średniej krajowej.
Dokończ zdania. Zaznacz odpowiedź spośród A–D oraz odpowiedź spośród E–H.
Pensja pana X jest wyższa od pensji pana Y
A.o \(40\%\) pensji pana Y.
B.o \(90\%\) pensji pana Y.
C.o \(150\%\) pensji pana Y.
D.o \(275\%\) pensji pana Y.
Pensja pana Y jest niższa od pensji pana X
E.o \(60\%\) pensji pana X.
F.o \(73\%\) pensji pana X.
G.o \(90\%\) pensji pana X.
H.o \(150\%\) pensji pana X.
1.C 2.E
Na wykresie przedstawiono zależność \(\log K(t)\), gdzie \(K(t)\) jest liczbą bakterii w próbce po czasie \(t\) wyrażonym w godzinach, jaki upłynął od chwili \(t=0\) rozpoczęcia obserwacji.
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.
Gdy upłynęły dokładnie trzy godziny od chwili \(t=0\), liczba \(K\) bakterii była równa
A.\( 3 \)
B.\( 100 \)
C.\( 1000 \)
D.\( 10000 \)
C
Liczba \(\log_2\left[(\sqrt{2})^2\cdot (\sqrt{2})^4\cdot (\sqrt{2})^8\right]\) jest równa
A.\( \sqrt{2} \)
B.\( 7 \)
C.\( 14 \)
D.\( 2^7 \)
B
Rozważmy takie liczby rzeczywiste \(a\) i \(b\), które spełniają warunki:\[a\ne 0,\ b\ne 0\quad \text{oraz}\quad a^3+b^3=(a+b)^3\]
Oblicz wartość liczbową wyrażenia \(\frac{a}{b}\) dla dowolnych liczb rzeczywistych \(a\) i \(b\), spełniających powyższe warunki.
\(-1\)
Dane jest wyrażenie \(W(x)=\frac{1}{2}\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)\)
Oceń prawdziwość poniższych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Wartość wyrażenia \(W(x)\) jest określona dla każdej liczby rzeczywistej \(x\ne 1\). PF
Wyrażenie \(W(x)\) można przekształcić równoważnie do wyrażenia \(\frac{2x}{x^2-1}\).PF
FP
Rozwiąż równanie \((x-1)^4-5(x-1)^2+6=0\)
\(x=1+\sqrt{2}\ \lor \ x=1-\sqrt{2}\ \lor \ x=1+\sqrt{3}\ \lor \ x=1-\sqrt{3},\ \)
Udowodnij, że dla każdej liczby naturalnej \(n\) liczba \(20n^2+30n+7\) przy dzieleniu przez \(5\) daje resztę \(2\).
Rozważmy dwie kolejne liczby naturalne \(a\) i \(b\) takie, że obie są niepodzielne przez \(3\). Udowodnij, że liczba \(a^3+b^3\) jest podzielna przez \(9\).
Dany jest wielomian \[W(x)=3x^3+mx^2+3x-2\] gdzie \(m\) jest pewną liczbą rzeczywistą. Wiadomo, że ten wielomian można zapisać w postaci iloczynowej: \[W(x)=(x+2)Q(x)\] gdzie \(Q(x)\) jest pewnym trójmianem kwadratowym.
Wyznacz wielomian \(Q(x)\) oraz oblicz wszystkie pierwiastki rzeczywiste wielomianu \(W(x)\).
\(Q(x)=3x^2+2x-1\), \(x_1=-2\), \(x_2=-1\), \(x_3=\frac{1}{3}\)
Dana jest funkcja \(f\) określona wzorem \(f(x)=x^3-b-5\sqrt{2}\) dla każdej liczby rzeczywistej \(x\). Miejscem zerowym funkcji \(f\) jest \(x=\sqrt{2}+1\).
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.
Współczynnik \(b\) we wzorze funkcji \(f\) jest równy
A.\( b=1 \)
B.\( b=7 \)
C.\( b=1-3\sqrt{2} \)
D.\( b=3-3\sqrt{2} \)
B
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=3x^2+bx-5\) dla każdej liczby rzeczywistej \(x\). Współczynnik \(b\) jest liczbą rzeczywistą mniejszą od zera.
Dokończ zdanie. Zaznacz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.
Funkcja \(f\)
A1
Dana jest funkcja \(y=f(x)\), której wykres przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku. Ta funkcja jest określona dla każdej liczby rzeczywistej \(x\in [-5,8]\).
(1 pkt) Zapisz w miejscu wykropkowanym poniżej zbiór rozwiązań nierówności: \[f(x)\gt 2\]
(1 pkt) Zapisz w miejscu wykropkowanym poniżej maksymalny przedział lub maksymalne przedziały, w których funkcja \(f\) jest malejąca.
(1 pkt) Uzupełnij zdanie. Wpisz odpowiednie liczby w wykropkowanych miejscach, aby zdanie było prawdziwe.
Największa wartość funkcji \(f\) jest równa liczbie ............... , a najmniejsza wartość funkcji \(f\) jest równa liczbie .......................
\([-5,-1)\cup (7,8]\)
\([-3,3]\)
\(6\) i \(-6\)
Dana jest funkcja \(y=f(x)\)), której wykres przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku. Ta funkcja jest określona dla \(x\in [-3,5]\). Funkcje \(g\) oraz \(h\) są określone za pomocą funkcji \(f\) następująco: \[y=g(x)=f(x+2)\qquad y=h(x)=f(-x)\] Na rysunkach A–F przedstawiono wykresy różnych funkcji – w tym wykresy funkcji \(g\) oraz \(h\).
Każdej z funkcji \(y=g(x)\) oraz \(y=h(x)\) przyporządkuj jej wykres. Wpisz obok symboli funkcji w tabeli poniżej właściwe odpowiedzi wybrane spośród A–F.
D,B
Wzór funkcji kwadratowej można zapisać w postaci ogólnej, kanonicznej lub iloczynowej (o ile istnieje).
(1 pkt) Dana jest funkcja kwadratowa \(y=f(x)\), której fragment wykresu przedstawiono w kartezjańskim układzie współrzędnych \((x,y)\) na rysunku poniżej.
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych, jeżeli wiadomo, że jeden ze wzorów podanych w odpowiedziach A–D to wzór funkcji \(f\).
Funkcja kwadratowa \(y=f(x)\) jest określona wzorem
A.\( y=-(x+5)^2-6 \)
B.\( y=-(x+5)^2+6 \)
C.\( y=-(x-5)^2-6 \)
D.\( y=-(x-5)^2+6 \)
(2 pkt) Do wykresu pewnej funkcji kwadratowej \(y=g(x)\) należy punkt o współrzędnych \(P=(2,-6)\). Osią symetrii wykresu tej funkcji jest prosta o równaniu \(x=3\), a jednym z miejsc zerowych funkcji \(g\) jest \(x_1=1\).
Wyznacz i zapisz wzór funkcji \(y=g(x)\) w postaci iloczynowej.
B
\(y=g(x)=2(x-1)(x-5)\)
Na podstawie zasad dynamiki można udowodnić, że torem rzutu – przy pominięciu oporów powietrza - jest fragment paraboli. Koszykarz wykonał rzut do kosza z odległości \(x_k=7{,}01\) m, licząc od środka piłki do środka obręczy kosza w linii poziomej. Do opisu toru ruchu przyjmiemy układ współrzędnych, w którym środek piłki w chwili początkowej znajdował się w punkcie \(x_0=0\), \(y_0 = 2{,}50\) m. Środek piłki podczas rzutu poruszał się po paraboli danej równaniem: \[y = −0{,}174x^2 + 1{,}3x + 2{,}5\] Rzut okazał się udany, a środek piłki przeszedł dokładnie przez środek kołowej obręczy kosza. Na rysunku poniżej przedstawiono tę sytuację oraz tor ruchu piłki w układzie współrzędnych.
(1 pkt) Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.
Obręcz kosza znajduje się na wysokości (podanej w zaokrągleniu z dokładnością do 0,01 m)
A.\( 3{,}04 \) m
B.\( 3{,}06 \) m
C.\( 3{,}80 \) m
D.\( 4{,}93 \) m
(2 pkt) Oblicz wysokość maksymalną, na jaką wzniesie się środek piłki podczas opisanego rzutu. Zapisz wynik w zaokrągleniu do drugiego miejsca po przecinku.
(3 pkt) W opisanym rzucie piłka przeleciała swobodnie przez obręcz kosza i upadła na parkiet. Przyjmij, że obręcz kosza nie miała siatki, a na drodze rzutu nie było żadnej przeszkody. Promień piłki jest równy \(0{,}12\) m.
Oblicz współrzędną \(x\) punktu środka piłki w momencie, w którym piłka dotknęła parkietu. Zapisz wynik w zaokrągleniu do drugiego miejsca po przecinku.
B
\(4{,}93\) m
\(x=8{,}99\) m