\(f'(x)=\frac{1}{4}\cdot 4x^3-\frac{1}{3}\cdot 3x^2+\frac{1}{2}\cdot 2x - 1\) \(=x^3-x^2+x-1\)
\(f'(x)=-1\cdot x^{-2}-3\cdot(-3)x^{-4}\) \(=-x^{-2}+9x^{-4}\)
Upraszczamy:\(-\frac{1}{x^2}+\frac{9}{x^4}\)
\(f'(x)=\frac{2}{3}x^{\frac{2}{3}-1}\) \(=\frac{2}{3}x^{-\frac{1}{3}}\)
\(f'(x)=-\frac{3}{4}x^{-\frac{3}{4}-1}\) \(=-\frac{3}{4}x^{-\frac{7}{4}}\)
\(f'(x)=2x-2-2\cdot\bigl(-\tfrac12\bigr)x^{-\frac{3}{2}}-3\cdot(-4)x^{-5}\) \(=2x-2+x^{-\frac{3}{2}}+12x^{-5}\)
\(f'(x)=e^x+4^x\ln4\)
\(f'(x)=3\cdot\frac{1}{x\ln2}+0\) \(=\frac{3}{x\ln2}\)
\(f'(x)=(x)'\sin x + x(\sin x)'\) \(=1\cdot\sin x + x\cdot\cos x\) \(=\sin x + x\cos x\)
\(f'(x)=(x^2+1)'e^x + (x^2+1)(e^x)'\) \(=2x\,e^x + (x^2+1)e^x\) \(=(x^2+2x+1)e^x\)
\(f'(x)=(x^3)'3^x + x^3(3^x)'\) \(=3x^2\,3^x + x^3\,3^x\ln3\) \(=3^x\bigl(3x^2 + x^3\ln3\bigr)\)
\(f'(x)=(x)'g + x\,g'\) \(=e^x\cos x + x\bigl((e^x)'\cos x + e^x(\cos x)'\bigr)\) \(=e^x\cos x + x\bigl(e^x\cos x - e^x\sin x\bigr)\) \(=e^x\cos x + x\,e^x(\cos x - \sin x)\)
\(f'(x)=\frac{(2x+1)'(3x+2) - (2x+1)(3x+2)'}{(3x+2)^2}\) \(=\frac{2(3x+2) - (2x+1)\cdot3}{(3x+2)^2}\) \(=\frac{6x+4 -6x-3}{(3x+2)^2}\) \(=\frac{1}{(3x+2)^2}\)
\(f'(x)=\frac{(2x-2)(x^2+2x-3) - (x^2-2x+3)(2x+2)}{(x^2+2x-3)^2}\) \(=\frac{2x^3+4x^2-6x-2x^3+2x^2-6x-6}{(x^2+2x-3)^2}\) \(=\frac{6x^2-12x-6}{(x^2+2x-3)^2}\) \(=\frac{6(x^2-2x-1)}{(x^2+2x-3)^2}\)
\(f'(x)=\frac{(1+2x^{\frac12})'(2+\sqrt3\,x) - (1+2x^{\frac12})(2+\sqrt3\,x)'}{(2+\sqrt3\,x)^2}\) \(=\frac{x^{-\frac12}(2+\sqrt3\,x) - (1+2x^{\frac12})\sqrt3}{(2+\sqrt3\,x)^2}\)
\(f'(x)=\frac{(x^2)'(\sin x+\cos x) - x^2(\sin x+\cos x)'}{(\sin x+\cos x)^2}\) \(=\frac{2x(\sin x+\cos x) - x^2(\cos x - \sin x)}{(\sin x+\cos x)^2}\)
\(f'(x)=\frac{(x\sin x)'(1+\tan x) - x\sin x\,(1+\tan x)'}{(1+\tan x)^2}\) \(=\frac{(\sin x + x\cos x)(1+\tan x) - x\sin x\sec^2 x}{(1+\tan x)^2}\)
\(f'(x)=2023\,(x^3-3x+4)^{2022}\cdot(3x^2-3)\)
\(f'(x)=-(\sin(x^3))\cdot(3x^2)\) \(=-3x^2\sin(x^3)\)
\(f'(x)=3(\cos x)^2\cdot(-\sin x)\) \(=-3\sin x\cos^2 x\)
\(f'(x)=(e^{x^2+3x})'\) \(=e^{x^2+3x}\cdot(x^2+3x)'\) \(=e^{x^2+3x}\cdot(2x+3)\) \(=(2x+3)e^{x^2+3x}\)
\(f'(x)=(e^{\sin x})'\) \(=e^{\sin x}\cdot(\sin x)'\) \(=e^{\sin x}\cdot\cos x\) \(=e^{\sin x}\cos x\)
\(f'(x)=(e^{\sin^2 x})'\) \(=e^{\sin^2 x}\cdot(\sin^2 x)'\) \(=e^{\sin^2 x}\cdot2\sin x\cos x\) \(=2\sin x\cos x\,e^{\sin^2 x}\)
\(f'(x)=\left((x^2+4)^{\frac12}\right)'\) \(=\frac12\left(x^2+4\right)^{-\frac12}\cdot(2x)\) \(=\frac{x}{\sqrt{x^2+4}}\)
\(f'(x)=\left((x-2)^{-\frac34}\right)'\) \(=-\frac34(x-2)^{-\frac74}\cdot1\) \(=-\frac{3}{4}(x-2)^{-\frac74}\)
\(f'(x)=(\ln\cos x)'\) \(=\frac{1}{\cos x}\cdot(-\sin x)\) \(=-\tan x\)
\(f'(x)=(\arcsin(x^3))'\) \(=\frac{1}{\sqrt{1-(x^3)^2}}\cdot(3x^2)\) \(=\frac{3x^2}{\sqrt{1-x^6}}\)
\(f'(x)=(\arctan x)'\arctan\frac1x + \arctan x\cdot(\arctan\frac1x)'\) \(=\frac{1}{1+x^2}\arctan\frac1x + \arctan x\cdot\frac{1}{1+(\frac1x)^2}\cdot\left(-\frac{1}{x^2}\right)\)
\(f'(x)=(\ln(2x))' - (\ln(3x+4))'\) \(=\frac{1}{x} - \frac{3}{3x+4}\)
\(f'(x) = \frac{(\sin x + \cos x)'\,\sin3x - (\sin x + \cos x)\cdot(\sin3x)'}{\sin^2 3x}\) \(=\frac{(\cos x - \sin x)\sin3x - (\sin x + \cos x)\cdot3\cos3x}{\sin^2 3x}\)
\(f'(x)=\frac12\Bigl(\frac{-\sin x}{1+\cos x}-\frac{\sin x}{1-\cos x}\Bigr)\) \(=\frac12\cdot \frac{-\sin x(1-\cos x)-\sin x(1+\cos x)}{(1+\cos x)(1-\cos x)}\) \(=\frac12\cdot \frac{-2\sin x}{\sin^2 x}=-\frac{1}{\sin x}\)
\(f'(x)=(e^{x\ln x})'\) \(=e^{x\ln x}\cdot(\ln x+1)\) \(=x^x(\ln x+1)\)
\(f'(x)=u'(x)v(x)+u(x)v'(x)\) \(=\frac12(x+1)^{-\frac12}\bigl(x^{-\frac12}-1\bigr)+(x+1)^{\frac12}\bigl(-\tfrac12x^{-\frac32}\bigr)\) \(=\frac{x^{-\frac12}-1}{2\sqrt{x+1}}-\frac{\sqrt{x+1}}{2x^{\frac32}}\)
\(f'(x)=u'(x)v(x)+u(x)v'(x)\) \(=\bigl(\tfrac13x^{-\frac23}+2\bigr)\bigl(1+(x^2+3x)^{\frac13}\bigr)+(x^{\frac13}+2x)\cdot\frac13(x^2+3x)^{-\frac23}(2x+3)\)
\(f'(x)=2\bigl((x^3-1)^{-1}\bigr)'=2\bigl(-1\,(x^3-1)^{-2}\bigr)\cdot3x^2\) \(=-6x^2(x^3-1)^{-2}\) \(=-\frac{6x^2}{(x^3-1)^2}\)
\(f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}\) \(=\frac{8x^3(9-x^2)-2x^4(-2x)}{(9-x^2)^2}\) \(=\frac{72x^3-8x^5+4x^5}{(9-x^2)^2}\) \(=\frac{72x^3-4x^5}{(9-x^2)^2}\) \(=\frac{4x^3(18-x^2)}{(9-x^2)^2}\)
\(f'(x)=\bigl((1+x^2)^{-\frac13}\bigr)'=-\frac13(1+x^2)^{-\frac43}\cdot2x\) \(=-\frac{2x}{3(1+x^2)^{\frac43}}\)
\(f'(x)=\bigl((1-x^4-x^8)^{-\frac12}\bigr)'=-\frac12(1-x^4-x^8)^{-\frac32}\cdot(-4x^3-8x^7)\) \(=\frac{4x^3+8x^7}{2(1-x^4-x^8)^{\frac32}}\) \(=\frac{2x^3(1+2x^4)}{(1-x^4-x^8)^{\frac32}}\)
\(f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}\) \(=\frac{1\cdot(1-\cos x)-x\cdot(0-(-\sin x))}{(1-\cos x)^2}\) \(=\frac{1-\cos x - x\sin x}{(1-\cos x)^2}\)
\(f'(x)=(\cos^2 x)'=2\cos x\cdot(-\sin x)\) \(=-2\sin x\cos x\)
\(f'(x)=3\cdot2\sin x\cos x - 3\sin^2 x\cos x\) \(=6\sin x\cos x -3\sin^2 x\cos x\)
\(f'(x)=3\cdot\cos(3x+5)\cdot(3x+5)'\) \(=3\cdot\cos(3x+5)\cdot3\) \(=9\cos(3x+5)\)
\(f'(x)=4\cos^3 x\cdot(-\sin x)\) \(=-4\sin x\cos^3 x\)
\(f'(x)=\cos\sqrt{1+x^2}\cdot\left(\sqrt{1+x^2}\right)'\) \(=\cos\sqrt{1+x^2}\cdot\frac12(1+x^2)^{-\frac12}\cdot2x\) \(=\frac{x\cos\sqrt{1+x^2}}{\sqrt{1+x^2}}\)
\(f'(x)=1\cdot\arcsin x + x\cdot\frac{1}{\sqrt{1-x^2}}\) \(=\arcsin x + \frac{x}{\sqrt{1-x^2}}\)
\(f'(x)=\arcsin x + \frac{x}{\sqrt{1-x^2}} + \frac12(1-x^2)^{-\frac12}\cdot(-2x)\) \(=\arcsin x + \frac{x}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}}\) \(=\arcsin x\)
\(f'(x)=(x)'= 1\)
\(f'(x)=\frac{1}{\sqrt{1-(\frac{2}{x})^2}}\cdot\bigl(-\frac{2}{x^2}\bigr)\) \(=-\frac{2}{x^2\sqrt{1-\frac{4}{x^2}}}\)
\(f'(x)=2\arctan\frac{1}{x}\cdot\frac{1}{1+(\frac{1}{x})^2}\cdot\bigl(-\frac{1}{x^2}\bigr)\) \(=-\frac{2\arctan\frac{1}{x}}{x^2\bigl(1+\frac{1}{x^2}\bigr)}\)
\(f'(x)=\frac{1}{1-\bigl(x-\sqrt{1+x^2}\bigr)^2}\cdot\Bigl(1 - \frac{1}{2\sqrt{1+x^2}}\cdot2x\Bigr)\) \(=\frac{1 - \frac{x}{\sqrt{1+x^2}}}{1-\bigl(x-\sqrt{1+x^2}\bigr)^2}\)
\(f'(x)=((\ln x)^{\frac12})'\) \(=\frac12(\ln x)^{-\frac12}\cdot\frac{1}{x}\) \(=\frac{1}{2x\sqrt{\ln x}}\)
\(f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}\) \(=\frac{\frac{1}{x}(1+x^2)-\ln x\cdot2x}{(1+x^2)^2}\) \(=\frac{1+x^2-2x^2\ln x}{x(1+x^2)^2}\)
\(f'(x)=(\ln(\sin x))'\) \(=\frac{1}{\sin x}\cdot\cos x\) \(=\cot x\)
\(f'(x)=(\log_{3}x)'\) \(=\frac{1}{x\ln3}\)
\(f'(x)=(\log_{5}(x^2-1))'\) \(=\frac{1}{(x^2-1)\ln5}\cdot2x\) \(=\frac{2x}{(x^2-1)\ln5}\)
\(f'(x)=(\ln(\arctan\sqrt{1+x^2}))'\) \(=\frac{1}{\arctan\sqrt{1+x^2}}\cdot\frac{1}{1+(\sqrt{1+x^2})^2}\cdot\frac12(1+x^2)^{-\frac12}\cdot2x\) \(=\frac{x}{(2+x^2)\sqrt{1+x^2}\,\arctan\sqrt{1+x^2}}\)
\(f'(x)=10^x\ln10\)
\(f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}\) \(=\frac{1\cdot4^x - x\cdot4^x\ln4}{4^{2x}}\) \(=\frac{1-x\ln4}{4^x}\)