Zadania tekstowe (5 pkt)

Na tej stronie znajduje się zestawienie zadań maturalnych rozszerzonej odpowiedzi, w których należy ułożyć układ równań z dwiema niewiadomymi.

Zadanie . (5 pkt)

Z miejscowości \(A\) i \(B\) oddalonych od siebie o \(182\) km wyjeżdżają naprzeciw siebie dwaj rowerzyści. Rowerzysta jadący z miejscowości \(B\) do miejscowości \(A\) jedzie ze średnią prędkością mniejszą od \(25\) km/h. Rowerzysta jadący z miejscowości \(A\) do miejscowości \(B\) wyjeżdża o \(1\) godzinę wcześniej i jedzie ze średnią prędkością o \(7\) km/h większą od średniej prędkości drugiego rowerzysty. Rowerzyści spotkali się w takim miejscu, że rowerzysta jadący z miejscowości \(A\) przebył do tego miejsca \(\frac{9}{13}\) całej drogi z \(A\) do \(B\). Z jakimi średnimi prędkościami jechali obaj rowerzyści?

Zadanie . (5 pkt)

Kolarz przejechał trasę długości \(60\) km. Gdyby jechał ze średnią prędkością większą o \(1\) km/h, to przejechałby tę trasę w czasie o \(6\) minut krótszym. Oblicz, z jaką średnią prędkością jechał ten kolarz.

Zadanie . (5 pkt)

Droga z miasta \(A\) do miasta \(B\) ma długość \(474\) km. Samochód jadący z miasta \(A\) do miasta \(B\) wyrusza godzinę później niż samochód z miasta \(B\) do miasta \(A\). Samochody te spotykają się w odległości \(300\) km od miasta \(B\). Średnia prędkość samochodu, który wyjechał z miasta \(A\), liczona od chwili wyjazdu z \(A\) do momentu spotkania, była o \(17\) km/h mniejsza od średniej prędkości drugiego samochodu liczonej od chwili wyjazdu z \(B\) do chwili spotkania. Oblicz średnią prędkość każdego samochodu do chwili spotkania.

Zadanie . (5 pkt)

Uczeń przeczytał książkę liczącą \(480\) stron, przy czym każdego dnia czytał taką samą liczbę stron. Gdyby czytał każdego dnia o \(8\) stron więcej, to przeczytałby tę książkę o \(3\) dni wcześniej. Oblicz, ile dni uczeń czytał tę książkę.

Zadanie . (4 pkt)

Z miast \(A\) i \(B\) odległych o \(330 \) km wyjechały naprzeciwko siebie dwa samochody. Samochód jadący z miasta \(A\) wyjechał \(20\) minut wcześniej i jechał z prędkością o \(9\) km/h mniejszą niż samochód jadący z miasta \(B\). Samochody te minęły się w odległości \(168\) km licząc od miasta \(A\). Oblicz średnią prędkość każdego z samochodów.

Zadanie . (5 pkt)

Turysta pokonał pieszo trasę długości \(30\) km z miejscowości \(A\) do miejscowości \(B\) ze stałą prędkością. Rowerem poruszałby się z prędkością o \(9\) km/h większą i przybyłby do celu o 3 godziny wcześniej. Wyznacz prędkość marszu turysty i czas przejścia tej drogi.

Zadanie . (5 pkt)

W czasie wakacji Marcin przejechał rowerem ze stałą prędkością odległość z miasteczka \(A\) do \(B\) liczącą \(120\) km. Gdyby jechał ze średnią prędkością o \(5\) km/h większą, to przejechałby tę odległość w czasie o \(2\) godziny krótszym. Wyznacz średnią rzeczywistą prędkość Marcina i rzeczywisty czas przejazdu.

Zadanie . (5 pkt)

Kolarz pokonał trasę \(114\) km. Gdyby jechał ze średnią prędkością mniejszą o \(9{,}5\) km/h, to pokonałby tę trasę w czasie o \(2\) godziny dłuższym. Oblicz, z jaką średnią prędkością jechał ten kolarz.

Zadanie . (5 pkt)

Miasto \(A\) i miasto \(B\) łączy linia kolejowa długości \(210\) km. Średnia prędkość pociągu pospiesznego na tej trasie jest o \(24\) km/h większa od średniej prędkości pociągu osobowego. Pociąg pospieszny pokonuje tę trasę o \(1\) godzinę krócej niż pociąg osobowy. Oblicz czas pokonania tej drogi przez pociąg pospieszny.

Zadanie . (5 pkt)

Adam rozwiązywał codziennie taką sama liczbę zadań i w sumie rozwiązał \(60\) zadań. Jeśli rozwiązywałby codziennie o \(6\) zadań więcej, to rozwiązałby te zadania o \(5\) dni krócej. Oblicz, przez ile dni Adam rozwiązywał zadania przed maturą i ile zadań rozwiązywał każdego dnia.

Zadanie . (5 pkt)

W czasie wakacji Marcin przejechał rowerem ze stałą prędkością odległość z miasteczka \(A\) do \(B\) liczącą \(120\) km. Gdyby jechał ze średnią prędkością o \(5\) km/godz. większą, to przejechałby tę odległość w czasie o \(2\) godziny krótszym. Wyznacz średnią rzeczywistą prędkość Marcina i rzeczywisty czas przejazdu.

Zadanie . (5 pkt)

Z dwóch miast \(A\) i \(B\), odległych od siebie o \(18\) kilometrów, wyruszyli naprzeciw siebie dwaj turyści. Pierwszy turysta wyszedł z miasta \(A\) o jedną godzinę wcześniej niż drugi z miasta \(B\). Oblicz prędkość, z jaką szedł każdy turysta, jeżeli wiadomo, że po spotkaniu pierwszy turysta szedł do miasta \(B\) jeszcze \(1{,}5\) godziny, drugi zaś szedł jeszcze \(4\) godziny do miasta \(A\).

Zadanie . (5 pkt)

Dwie szkoły mają prostokątne boiska. Przekątna każdego boiska jest równa \(65\) m. Boisko w drugiej szkole ma długość o \(4\) m większą niż boisko w pierwszej szkole, ale szerokość o \(8\) m mniejszą. Oblicz długość i szerokość każdego z boisk.

Zadanie . (4 pkt)

W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię \(240\) m2. Basen w drugim hotelu ma powierzchnię \(350\) m2 oraz jest o \(5\) m dłuższy i \(2\) m szerszy niż w pierwszym hotelu. Oblicz, jakie wymiary mogą mieć baseny w obu hotelach. Podaj wszystkie możliwe odpowiedzi.

Zadanie . (6 pkt)

Dwa pociągi towarowe wyjechały z miast \(A\) i \(B\) oddalonych od siebie o \(540\) km. Pociąg jadący z miasta \(A\) do miasta \(B\) wyjechał o godzinę wcześniej niż pociąg jadący z miasta \(B\) do miasta \(A\) i jechał z prędkością o \(9\) km/h mniejszą. Pociągi te minęły się w połowie drogi. Oblicz z jakimi prędkościami jechały te pociągi.

Zadanie . (6 pkt)

W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię \(240\) m2. Basen w drugim hotelu ma powierzchnię \(350\) m2 oraz jest o \(5\) m dłuższy i o \(2\) m szerszy niż w pierwszym hotelu. Oblicz jakie wymiary ma pierwszy basen.

Zadanie . (6 pkt)

Prostokątna działka ma powierzchnię \(300\) m2. Wiadomo, że jeden bok jest o \(5\) m dłuższy od drugiego. Ile kosztowało ogrodzenie tej działki, jeżeli za \(1\) m siatki właściciel zapłacił \(30\) zł?

Zadanie . (5 pkt)

Pewien turysta pokonał trasę \(112\) km, przechodząc każdego dnia tę samą liczbę kilometrów. Gdyby mógł przeznaczyć na tę wędrówkę o \(3\) dni więcej, to w ciągu każdego dnia mógłby przechodzić o \(12\) km mniej. Oblicz, ile kilometrów dziennie przechodził ten turysta.

Zadanie . (5 pkt)

Dane są dwie prostokątne działki. Działka pierwsza ma powierzchnię równą \(6000\) m2. Działka druga ma wymiary większe od wymiarów pierwszej działki o \(10\) m i \(15\) m oraz powierzchnię większą o \(2250\) m2. Oblicz wymiary pierwszej działki.

Zadanie . (5 pkt)

Do zbiornika można doprowadzić wodę dwiema rurami. Czas napełniania zbiornika tylko pierwszą rurą jest o \(5\) godzin i \(30\) minut krótszy od czasu napełniania tego zbiornika tylko drugą rurą, natomiast \(15\) godzin trwa napełnienie tego zbiornika obiema rurami jednocześnie. Oblicz, w ciągu ilu godzin pusty zbiornik zostanie napełniony, jeśli woda będzie doprowadzana tylko pierwszą rurą.

Zadanie . (5 pkt)

Dwa miasta łączy linia kolejowa o długości \(336\) kilometrów. Pierwszy pociąg przebył tę trasę w czasie o \(40\) minut krótszym niż drugi pociąg. Średnia prędkość pierwszego pociągu na tej trasie była o \(9\) km/h większa od średniej prędkości drugiego pociągu. Oblicz średnią prędkość każdego z tych pociągów na tej trasie.

Zadanie . (5 pkt)

Pewien kierowca, jadąc z miasta \( A \) do miasta \( B \), zmierzył czas i prędkość jazdy. Drogę powrotną pokonał z prędkością o \(12\) km/h większą, w czasie o \( 12 \) minut krótszym. Z jaką średnią prędkością wracał kierowca do miasta \( A \), jeżeli wiadomo, że miasta te są oddalone od siebie o \(117\) km?

Zadanie . (4 pkt)

Uczeń przygotowujący się do matury w ciągu pierwszego tygodnia rozwiązał \(5\) zadań. Postanowił jednak, że w każdym następnym tygodniu będzie rozwiązywał o \(2\) zadania więcej niż w poprzednim tygodniu. W którym tygodniu liczba zadań rozwiązanych przez niego od początku nauki przekroczy \(480\)?

Zadanie . (5 pkt)

Ojciec i syn zbierają jabłka. Razem zebranie wszystkich jabłek zajęło im \(6\) godzin. Gdyby ojciec zbierał jabłka sam, to zajęłoby mu to o \(5\) godzin mniej, niż gdyby zbierał je sam jego syn. W jakim czasie ojciec sam zebrałby wszystkie jabłka? 

Zadanie . (5 pkt)

Wykwalifikowany robotnik pracując sam, wykonałby pracę w czasie krótszym o \(10\) dni od pracownika niewykwalifikowanego. Aby pracę wykonać szybciej, powierzono ją obu robotnikom, którzy pracując razem, wykonali ją w ciągu \(12\) dni. W ciągu ilu dni wykonałby pracę każdy robotnik pracując samodzielnie?

Zadanie . (5 pkt)

Pewien kierowca, jadąc z miasta \( A \) do miasta \( B \), zmierzył czas i prędkość jazdy. Drogę powrotną pokonał z prędkością o \(12\) km/h większą, w czasie o \( 12 \) minut krótszym. Z jaką średnią prędkością wracał kierowca do miasta \( A \), jeżeli wiadomo, że miasta te są oddalone od siebie o \(117\) km?

Zadanie . (5 pkt)

Turysta zwiedzał zamek stojący na wzgórzu. Droga łącząca parking z zamkiem ma długość \(2{,}1\) km. Łączny czas wędrówki turysty z parkingu do zamku i z powrotem, nie licząc czasu poświęconego na zwiedzanie, był równy \(1\) godzinę i \(4\) minuty. Oblicz, z jaką średnią prędkością turysta wchodził na wzgórze, jeżeli prędkość ta była o \( 1 \) km/h mniejsza od średniej prędkości, z jaką schodził ze wzgórza.

Zadanie . (5 pkt)

Miasta \( A \) i \( B \) są oddalone o \( 450 \) km. Pani Danuta pokonała tę trasę swym samochodem w czasie o \( 75 \) minut dłuższym niż pani Lidia. Wartość średniej prędkości, z jaką jechała pani Danuta na całej trasie, była o \( 18 \) km/h mniejsza od wartości średniej prędkości, z jaką jechała pani Lidia. Oblicz średnie wartości:
  • prędkości, z jaką pani Danuta jechała z \(A\) do \(B\)
  • prędkości, z jaką pani Lidia jechała z \(A\) do \(B\)