Jesteś tutaj: SzkołaStatystykaOdchylenie standardowe
◀ Wariancja

Odchylenie standardowe

Załóżmy że mamy dane liczby \(x_1, x_2,..., x_n\) oraz że ich średnia arytmetyczna wynosi \(\overline{X} \)
Wówczas odchylenie standardowe tych liczb od ich średniej arytmetycznej, to pierwiastek kwadratowy z wariancji, czyli: \[\sigma=\sqrt{\frac{\left(x_1-\overline{X} \right)^2+\left(x_2-\overline{X} \right)^2+...+\left(x_n-\overline{X} \right)^2}{n}}\]
Obliczymy wariancję liczb \(x_1 = 7, x_2 = 4, x_3 = -2\).
Najpierw liczymy średnią arytmetyczną: \[\overline{X}=\frac{7+4+(-2)}{3}=\frac{9}{3}=3 \] Zatem wariancja jest równa: \[\sigma^2=\frac{(7-3)^2+(4-3)^2+(-2-3)^2}{3}=\frac{16+1+25}{3}=\frac{42}{3}=14\] Czyli odchylenie standardowe wynosi: \[\sigma=\sqrt{14}\]
Troje przyjaciół ma wzrost równy odpowiednio \(140\) cm, \(150\) cm i \(160\) cm. Oblicz odchylenie standardowe od średniej.
\[\sigma=\sqrt{\frac{200}{3}}\]
Najpierw liczymy średnią arytmetyczną: \[\overline{X}=\frac{140+150+160}{3}=\frac{450}{3}=150 \] Zatem wariancja jest równa: \[\sigma^2=\frac{(140-150)^2+(150-150)^2+(160-150)^2}{3}=\frac{100+0+100}{3}=\frac{200}{3}\] Czyli odchylenie standardowe wynosi: \[\sigma=\sqrt{\frac{200}{3}}\]
Czworo przyjaciół ma wzrost równy odpowiednio \(140\) cm, \(150\) cm \(160\) cm i \(130\) cm. Oblicz odchylenie standardowe od średniej wzrostu.
\[\sigma=\frac{10\sqrt{5}}{2}\]
Najpierw liczymy średnią arytmetyczną: \[\overline{X}=\frac{140+150+160+130}{4}=\frac{580}{4}=145\] Zatem wariancja jest równa: \[\sigma^2=\frac{(140-145)^2+(150-145)^2+(160-145)^2+(130-145)^2}{4}=\frac{25+25+225+225}{4}=\frac{500}{4}\] Czyli odchylenie standardowe wynosi: \[\sigma=\sqrt{\frac{500}{4}}=\frac{\sqrt{100\cdot 5}}{2}=\frac{10\sqrt{5}}{2}\]
W pięciu kolejnych rzutach kostką do gry otrzymano następujące wyniki: \(6, 3, 5, 5, 6\). Odchylenie standardowe tych wyników jest równe
A.\( \frac{\sqrt{6}}{5} \)
B.\( \frac{\sqrt{30}}{5} \)
C.\( \frac{6}{5} \)
D.\(5\)
B
Tabela przedstawia wyniki uzyskane na sprawdzianie przez uczniów klasy III.
Oceny \(6\) \(5\) \(4\) \(3\) \(2\) \(1\)
Liczba uczniów \(1\) \(2\) \(6\) \(5\) \(9\) \(2\)
Oblicz średnią arytmetyczną i kwadrat odchylenia standardowego uzyskanych ocen.
\(\overline{x}=3 \), \(\sigma ^2=1{,}6\)
Wykonano pomiary wysokości czterech krzeseł i każde dwa rezultaty były różne. Adam zapisał wyniki w metrach i odchylenie standardowe jego danych było równe \(\sigma _A\). Bogdan zapisał te wyniki w centymetrach i odchylenie standardowe jego danych było równe \(\sigma _B\). Wynika stąd, że
A.\( \sigma _A=10\sigma _B \)
B.\( \sigma _A = 100\sigma _B \)
C.\( 10\sigma _A=\sigma _B \)
D.\( 100\sigma _A=\sigma _B \)
D
Zestaw danych: \(x_1,x_2,x_3,...,x_n\) ma średnią arytmetyczną \(a\) i odchylenie standardowe \(s\). Wykaż, że zestaw danych: \(\frac{x_1-a}{s}, \frac{x_2-a}{s}, \frac{x_3-a}{s},...,\frac{x_n-a}{s}\) ma średnią arytmetyczną \(0\).
Adam otrzymał z trzech kolejnych klasówek następujące oceny: \(6\), \(4\), \(4\). Oblicz, jaką ocenę otrzymał Adam z czwartej klasówki, jeżeli odchylenie standardowe otrzymanych ocen jest równe \(\sqrt{\frac{11}{16}}\).
\(5\)

W zestawie \(\underbrace{2,2,2,...,2}_{m \text{ liczb}}, \underbrace{4,4,4,...,4}_{m \text{ liczb}}\) jest \(2m\) liczb \((m\ge1)\), w tym \(m\) liczb \(2\) i \(m\) liczb \(4\).

Odchylenie standardowe tego zestawu liczb jest równe

A.\( 2 \)
B.\( 1 \)
C.\( \frac{1}{\sqrt{2}} \)
D.\( \sqrt{2} \)
B