Jesteś tu: Działy tematyczneLiczby i działaniaNajmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW)

Definicja NWW i przykłady
Wspólna wielokrotność liczb naturalnych \(n\) i \(m\) - to każda liczba naturalna, która dzieli się bez reszty przez \(n\) oraz przez \(m\).
Wyznacz wspólną wielokrotność liczb \(2\) i \(3\).
Szukamy liczby, którą można podzielić bez reszty przez \(2\) oraz przez \(3\).
Dobrą liczbą jest np. liczba \(6\), ale również \(12\), \(18\), \(60\), \(300\) i wiele innych.
Wyznacz wspólną wielokrotność liczb \(5\) i \(10\).
Szukamy liczby, którą można podzielić bez reszty przez \(5\) oraz przez \(10\).
Dobrymi liczbami są np.: \(10\), \(20\), \(30\), \(100\).
Najmniejsza wspólna wielokrotność (NWW) liczb naturalnych \(n\) i \(m\) - to najmniejsza liczba różna od zera, która jest jednocześnie wielokrotnością liczby \(n\) i liczby \(m\).
Najmniejszą wspólną wielokrotność liczb \(n\) i \(m\) zapisujemy tak: \[\operatorname{NWW}(n, m)\]
Najmniejsza wspólna wielokrotność liczb \(2\) i \(3\) to: \[\operatorname{NWW}(2, 3)=6\]
Najmniejsza wspólna wielokrotność liczb \(5\) i \(10\) to: \[\operatorname{NWW}(5, 10)=10\]
Wyznacz NWW liczb \(6\) i \(8\).
Wielokrotności liczby \(6\), to: \[6, 12, 18, 24, 30, 36, 42, 48,...\] Wielokrotności liczby \(8\), to: \[8, 16, 24, 32, 40, 48, 56, 64,...\] Zatem najmniejszą wspólną wielokrotnością liczb \(6\) i \(8\) jest liczba \(24\). Zapisujemy to w taki sposób: \[\operatorname{NWW}(6, 8) = 24\].
Sąsiednie tematy
Najmniejsza wspólna wielokrotność (NWW) (tu jesteś)